دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: С. П. Иглин
سری: Учебное пособие
ناشر: БХВ-Петербург
سال نشر: 2005
تعداد صفحات: 634 с.
[634]
زبان: Russian
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Математические расчеты на базе MATLAB: [вариац. исчисление: лекции, лаб. работы, варианты заданий : мат. статистика: теория, примеры решения прикладных задач, генерация заданий для студентов : теория графов: методы решения задач, описание Graph Theory Toolbox : инструментарий MATLAB: Symbolic Math Toolbox, Partial Differential Equation Toolbox, Statistics Toolbox] به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات ریاضی بر اساس متلب: [تغییر. حساب دیفرانسیل و انتگرال: سخنرانی، آزمایشگاه. کار، گزینه های شغلی: حصیر. آمار: تئوری، مثالهایی از حل مسئله کاربردی، تولید تکلیف برای دانشآموزان: نظریه گراف: روشهای حل مسئله، توضیحات جعبه ابزار نظریه گراف: ابزارهای متلب: جعبه ابزار ریاضی نمادین، جعبه ابزار معادلات دیفرانسیل جزئی، جعبه ابزار آمار] نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Содержание Введение Структура и содержание книги Необходимое программное обеспечение ЧАСТЬ I. ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава 1. Введение в вариационное исчисление 1.1. Основная задача вариационного исчисления 1.2. Классические задачи и принципы вариационного исчисления 1.3. Классы функций 1.4. Экстремум функционала 1.5. Непрерывность и варьируемость функционала 1.6. Вариация функционала 1.7. Необходимое условие экстремума функционала 1.8. Основная лемма вариационного исчисления 1.9. Вопросы для самопроверки Глава 2. Элементарная задача вариационного исчисления 2.1. Дифференциальное уравнение Эйлера 2.2. Частные случаи уравнений Эйлера 2.2.1. Подынтегральная функция F не зависит явно от y' 2.2.2. Подынтегральная функция F линейно зависит от y' 2.2.3. Подынтегральная функция F не зависит явно от y' 2.2.4. Подынтегральная функция F зависит только от y' 2.2.5. Подынтегральная функция F не зависит явно от x 2.3. Вопросы для самопроверки 2.4. Примеры выполнения заданий 2.4.1. Задание 1 2.4.2. Задание 2 2.4.3. Задание 3 2.5. Задание Глава 3. Функционалы, зависящие от нескольких функций 3.1. Система дифференциальных уравнений Эйлера 3.2. Вопросы для самопроверки 3.3. Пример выполнения задания 3.4. Задание Глава 4. Функционалы, зависящие от производных высших порядков 4.1. Дифференциальное уравнение Эйлера — Пуассона 4.2. Вопросы для самопроверки 4.3. Пример выполнения задания 4.4. Задание Глава 5. Функционалы, зависящие от функции нескольких переменных 5.1. Дифференциальное уравнение Эйлера — Остроградского 5.2. Вопросы для самопроверки 5.3. Пример выполнения задания 5.4. Задание Глава 6. Вариационная задача в параметрической форме 6.1. Когда это нужно? 6.2. Переход к параметру в элементарной задаче вариационного исчисления 6.3. Вопросы для самопроверки Глава 7. Естественные граничные условия 7.1. Элементарная задача вариационного исчисления без граничного условия 7.2. Функционал, зависящий от нескольких функций, без граничного условия 7.3. Вопросы для самопроверки 7.4. Примеры выполнения заданий 7.4.1. Задание 1 7.4.2. Задание 2 7.4.3. Задание 3 7.5. Задание Глава 8. Условия трансверсальности 8.1. Условия трансверсальности в элементарной задаче 8.2. Условия трансверсальности для функционала, зависящего от двух функций 8.3. Вопросы для самопроверки 8.4. Примеры выполнения заданий 8.4.1. Задание 1 8.4.2. Задание 2 8.4.3. Задание 3 8.5. Задание Глава 9. Отражение экстремалей 9.1. Отражение экстремалей в элементарной задаче вариационного исчисления 9.2. Вопросы для самопроверки 9.3. Пример выполнения задания 9.4. Задание Глава 10. Преломление экстремалей 10.1. Преломление экстремалей в элементарной задаче 10.2. Вопрос для самопроверки 10.3. Пример выполнения задания 10.4. Задание Глава 11. Экстремали с угловыми точками 11.1. Откуда берутся угловые точки? 11.2. Вопросы для самопроверки Глава 12. Односторонние вариации 12.1. Запрет на пребывание экстремали в заданной области 12.2. Вопрос для самопроверки 12.3. Пример выполнения задания 12.4. Задание Глава 13. Достаточные условия экстремума 13.1. Собственное и центральное поле 13.2. Поле экстремалей 13.3. Функция Вейерштрасса 13.4. Достаточные условия Вейерштрасса экстремума функционала 13.5. Достаточные условия Лежандра экстремума функционала 13.6. Вопросы для самопроверки Глава 14. Условный экстремум функционалов 14.1. Вариационная задача для функционала с голономными ограничениями 14.2. Вариационная задача с неголономными ограничениями 14.3. Изопериметрические задачи 14.4. Вопросы для самопроверки 14.5. Примеры выполнения заданий 14.5.1. Задание 1 14.5.2. Задание 2 14.5.3. Задание 3 14.6. Задание Глава 15. Метод начальных параметров 15.1. Метод стрельбы, начальных параметров, матричной прогонки 15.2. Вопросы для самопроверки 15.3. Примеры выполнения заданий 15.3.1. Задание 1 15.3.2. Задание 2 15.3.3. Задание 3 15.4. Задание Глава 16. Метод конечных разностей (МКР) 16.1. МКР для вариационных задач с обыкновенными дифференциальными 16.2. МКР для вариационной задачи в частных производных: 16.3. МКР для вариационной задачи в частных производных: треугольная сетка 16.4. Вопросы для самопроверки 16.5. Примеры выполнения заданий 16.5.1. Задание 1 16.5.2. Задание 2 16.6. Задание Глава 17. Метод Ритца 17.1. Применение метода Ритца к одномерным задачам 17.2. Метод Ритца в применении к двумерным задачам 17.3. МКР + метод Ритца ==> МКЭ 17.4. Вопросы для самопроверки 17.5. Примеры выполнения заданий 17.5.1. Задание 1 17.5.2. Задание 2 17.6. Задание ЧАСТЬ II. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Глава 18. Основы выборочного метода 18.1. Генеральная совокупность и выборка 18.2. Оценки и требования к ним 18.3. Оценка математического ожидания 18.4. Оценка дисперсии 18.5. Другие выборочные параметры 18.6. Методика текущих измерений 18.7. Вопросы для самопроверки Глава 19. Доверительные оценки параметров распределения 19.1. Квантили 19.2. Доверительный интервал и доверительная вероятность 19.3. Абсолютная и практическая достоверность 19.4. Проверка статистических гипотез 19.5. Односторонние и двухсторонние критерии 19.6. Вопросы для самопроверки Глава 20. Оценки генеральных параметров распределения 20.1. Оценка генерального математического ожидания 20.2. Оценка генеральной дисперсии 20.3. Оценка других генеральных параметров 20.4. Выявление промахов 20.5. Вопросы для самопроверки Глава 21. Анализ закона распределения 21.1. Простейший критерий проверки основной гипотезы 21.2. Подбор теоретического распределения и его параметров 21.2.1. Вид теоретического распределения 21.2.2. Параметры теоретического распределения 21.3. Критерии согласия 21.3.1. Критерий согласия Колмогорова 21.3.2. Критерий согласия Пирсона 21.4. Вопросы для самопроверки Глава 22. Сравнение выборок 22.1. Сравнение двух дисперсий 22.2. Сравнение двух средних 22.3. Сравнение нескольких дисперсий 22.3.1. Критерий Бартлета 22.3.2. Критерий Кохрана 22.4. Сравнение нескольких средних 22.5. Вопросы для самопроверки Глава 23. Дисперсионный анализ 23.1. 1-факторный дисперсионный анализ 23.2. 2-факторный дисперсионный анализ 23.3. Многофакторный дисперсионный анализ 23.4. Вопросы для самопроверки Глава 24. Метод наименьших квадратов 24.1. МНК и его связь с ПМП 24.2. Система нормальных уравнений Гаусса 24.3. Доверительные интервалы для генеральных параметров аппроксимации 24.4. Аппроксимация степенными полиномами 24.5. Тригонометрическая аппроксимация 24.6. Аппроксимация функции нескольких переменных 24.6.1. Линейная модель для 2-факторного эксперимента 24.6.2. Полином для 2-факторного эксперимента 24.7. Нелинейная зависимость от параметров 24.8. Метод наименьших, но не квадратов 24.9. Вопросы для самопроверки Глава 25. Корреляционный анализ 25.1. Понятие о корреляции 25.2. Оценка коэффициента корреляции по данным наблюдений 25.3. Вопросы для самопроверки Глава 26. Генерация вариантов заданий 26.1. Обработка массива данных 26.2. Сравнение двух выборок 26.3. Сравнение нескольких выборок 26.4. Двухфакторный дисперсионный анализ 26.5. Аппроксимация степенными полиномами 26.6. Тригонометрическая аппроксимация 26.7. Линейная функция двух переменных 26.8. Кривая насыщения 26.9. Корреляционный анализ Глава 27. Функции пакета Statistics Toolbox 27.1. Функции распределения 27.2. Плотности распределения 27.3. Квантили распределения 27.4. Генераторы случайных чисел 27.5. Статистические характеристики 27.6. Подбор параметров 27.7. Функции правдоподобия 27.8. Функции описательной статистики 27.9. Статистическая графика 27.10. Статистическое управление процессами 27.11. Линейные модели 27.12. Нелинейные модели 27.13. Планирование эксперимента 27.14. Кластерный анализ 27.15. Понижение размерности задач 27.16. Многомерный анализ данных 27.17. Анализ на основе дерева возможных решений 27.18. Проверка статистических гипотез 27.19. Проверка теоретического распределения 27.20. Функции непараметрической статистики 27.21. Демонстрационные примеры 27.22. Функции ввода-вывода 27.23. Вспомогательные функции ЧАСТЬ III. ТЕОРИЯ ГРАФОВ Глава 28. Графы и орграфы 28.1. Основные определения теории графов 28.2. Как задать граф 28.3. Описание процедуры PlotGraph 28.4. Пример обращения 28.5. Вопросы для самопроверки Глава 29. Больше ребер, меньше вершин 29.1. Максимальное паросочетание 29.1.1. Основные определения 29.1.2. Сведение к задаче целочисленного линейного программирования 29.1.3. Описание процедуры MaxMatch 29.1.4. Пример обращения к процедуре MaxMatch 29.2. Минимальное вершинное покрытие 29.2.1. Основные определения и постановка задачи 29.2.2. Сведение к задаче ЦЛП 29.2.3. Описание процедуры MinVerCover 29.2.4. Пример обращения к процедуре MinVerCover 29.3. Немного о двойственности 29.4. Вопросы для самопроверки Глава 30. Жадные алгоритмы и минимальные остовные деревья 30.1. Жадность помогает и губит 30.2. Остовное дерево минимального веса 30.3. Описание процедуры MinSpanTree 30.4. Пример обращения к процедуре MinSpanTree 30.5. Вопросы для самопроверки Глава 31. Базис в пространстве циклов 31.1. Сколько нужно циклов? 31.2. Описание процедуры CicleBasis 31.3. Пример обращения к процедуре CicleBasis 31.4. Вопросы для самопроверки Глава 32. Правильная раскраска вершин 32.1. Сколько нужно красок? 32.2. Правильная раскраска графа — задача ЦЛП 32.3. Описание процедуры ColorGraph 32.4. Пример обращения к процедуре ColorGraph 32.5. Вопросы для самопроверки Глава 33. Кратчайший путь 33.1. Постановка задачи о кратчайшем пути 33.2. Алгоритм Дейкстры 33.3. Алгоритм Флойда — Уоршелла 33.4. Описание процедуры ShortPath 33.5. Пример обращения к процедуре ShortPath 33.6. Вопросы для самопроверки Глава 34. Разбиваем и упорядочиваем 34.1. Бинарные отношения 34.2. Разбиение на классы эквивалентности 34.3. Алгоритмы упорядочения 34.4. Описание процедуры DecompPartOrder 34.5. Пример обращения к процедуре DecompPartOrder 34.6. Вопросы для самопроверки Глава 35. Максимальный поток в сети 35.1. Задача о максимальном потоке как задача линейного программирования 35.2. Описание процедуры MaxFlows 35.3. Пример обращения к процедуре MaxFlows 35.4. Вопросы для самопроверки Глава 36. Задача коммивояжера 36.1. Задача коммивояжера — задача ЦЛП 36.2. Описание процедуры TravSale 36.3. Пример обращения к процедуре TravSale 36.4. Вопросы для самопроверки ПРИЛОЖЕНИЯ Приложение 1. Учимся работать в MATLAB П1.1. Символические вычисления П1.2. Построение графиков П1.3. Решение конечных уравнений П1.4. Решение дифференциальных уравнений П1.5. Вопросы для самопроверки Приложение 2. Описание компакт-диска Список литературы Предметный указатель